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abstract: Pollen grains from different plants potentially compete
for ovule access because flowers produce many more pollen grains
than ovules. Pollen competition could occur on pollinators, where there
is finite space for pollen placement. Here, we explore the explosive pol-
len deposition inHypenia macrantha (Lamiaceae, a perennial flower-
ing plant native to South America that is frequently visited by hum-
mingbirds) and determine whether it can improve male performance
by reducing pollen loads deposited by previously visited flowers. Through
the simulation of floral visits utilizing a hummingbird skull, we showed
that explosive pollen deposition by untriggered flowers dislodges almost
twice as many pollen grains as already-triggered flowers. In addition,
pollen removal increases with the amount of deposited pollen by the
floral explosion, suggesting that the precision or the explosive force of
pollen deposition plays a pivotal role in this pollen removal process.
These results suggest that explosive pollen placement, a mechanism
that has evolved in many unrelated angiosperm clades, may confer a
prepollination male competition advantage to plants.
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Introduction

When female animals have multiple mates (polyandry),
sperm from rival males compete for access to a limited
number of eggs (Birkhead and Hunter 1990; Parker 1970).
In some polyandrous animals, the first male that females
copulate with may have a time advantage, and his sperm
may fertilize more eggs than subsequent males (Eady 1995).
This time advantage can be accentuated by using mating
plugs, which prevent females from immediately mating with
rival males (Wedell et al. 2010; Stockley et al. 2020). How-
ever, the females of some species can store sperm for later
use, and many sperm competition studies in animals have
found that males who mate last sire more offspring than
the males who mated earlier (Parker 1970; Zeh and Zeh
1994; Parker and Pizzari 2010). In fact, for most insects and
birds, sperm from the last mated male fertilizes the major-
ity of eggs (Gwynne 1984; Birkhead and Hunter 1990). This
can occur through two main mechanisms. In the first (strat-
ification), sperm from the first mated male is pushed to the
back of the female’s sperm store by the sperm of the last
mated male, giving the last mated male a reproductive ad-
vantage (Michiels and Dhondt 1988; Córdoba-Aguilar et al.
2003). In the second mechanism (sperm removal), animals
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remove sperm from the reproductive tracts of females, of-
ten by using structures on their penis that scoop or brush
(Waage 1979; Córdoba-Aguilar et al. 2003).
Like animals, plants produce large numbers of male gam-

etes that compete for access to a small number of ovules
(Cruden 2000; Harder and Johnson 2023). However, un-
like animals, mating is seldom direct and is usually med-
iated by pollinators (Murphy 1998; Delph and Ashman
2006; Ollerton et al. 2011; Tong et al. 2023). Furthermore,
pollen grains (i.e., the male gamete carriers) are relatively
short-lived and are not stored by plants after mating has
taken place. Consequently, unlike animals, flowers of one
plant are unable to manipulate pollen grains once they
arrive on the stigmas of another plant, and it is unsurpris-
ing that pollen competition mechanisms like stratification
and pollen removal have been poorly explored in plants
(Stephenson and Bertin 1983; Moore and Pannell 2011).
Instead, most pollen competition in plants has focused on
competition in a postpollination context by studying differ-
ences in the germination and growth rates of pollen tubes
down the styles of flowers (Minnaar et al. 2019). However,
Minnaar et al. (2019) suggested that the bodies of polli-
nators may represent an additional arena in which pollen
competition may occur, especially if space for pollen at-
tachment is limited. They hypothesized that because flowers
interact with and can potentially manipulate the pollina-
tors’ pollen loads, pollen competition on pollinators may
facilitate the evolution of plant strategies that are similar
to strategies of sperm manipulation in animals (also see
Anderson and Minnaar 2020).
Limited attachment space may be especially prevalent in

plant species that utilize a very small part of their polli-
nators’ bodies for pollen placement and receipt. Small de-
position and receipt sites may be prevalent in many plants
because it is advantageous to place pollen in “safe sites”
(Koch et al. 2017), where the chance of being groomed
by pollen-consuming vectors is lower (Macior 1967; Thorp
2000; Tong and Huang 2018). Furthermore, small depo-
sition and receipt sites may also increase the accuracy of
pollen transfer to stigmas or even reduce the chances of
improper pollen transfer (Muchhala and Potts 2007; Arm-
bruster et al. 2009; Moreira-Hernández and Muchhala 2019;
Newman and Anderson 2020). Plants could potentially
compete for the small deposition sites by depositing large
pollen loads that smother rival pollen from previous vis-
its (Minnaar et al. 2019; Santana et al. 2024). This could oc-
cur in amanner similar to sperm stratification if pollen from
rival flowers is deposited in layers, where the last layers pre-
vent earlier layers from reaching the stigmas of subsequently
visited flowers (Price and Waser 1982; Lertzman and Gass
1983). Moir and Anderson (2023) found evidence for such
layering, and Santana et al. (2024) found that pollen from
the last flower visited was better represented on stigmas
than pollen from the first flower visited, suggestive of a pol-
len placement effect similar to sperm stratification. How-
ever, Moir and Anderson (2023) also found evidence sug-
gesting a “saturation effect,” where pollen already on the
body of the pollinator may prevent the deposition of new
pollen (pollen preclusion), potentially acting in a way sim-
ilar to the copulation plugs found in animals. Similarly,
two other studies also found that pollinaria on insect pol-
linators may reduce the chances of new pollinaria from
attaching (Cocucci et al. 2014; Duffy and Johnson 2014;
Harder et al. 2021). It is possible that placing large pollen
loads onto pollinators may enhance the pollen-smothering
effect; however, large loads may not adhere to pollinators
if pollen preclusion occurs (Moir and Anderson 2023). Fur-
thermore, large pollen loads may also increase the chances
of pollinator grooming or increase the chances that pollen
falls off while pollinators are in flight (Harder and Thomson
1989; Harder 1990; Harder and Wilson 1997). One way
that plants may respond to this is through pollen dosing,
which limits the amount of pollen deposited with each visit
(Thomson et al. 2000; Castellanos et al. 2006). However,
Minnaar et al. (2019) suggested that, similar to sperm removal
in animals, plants may also respond by removing preexisting
pollen before depositing their own. They suggested that the
brushlike hairs surrounding the pollen dispenser of some
flowers (e.g., Lobelia sp., Campanulaceae) may function to
clean rival pollen from pollinators before they deposit their
own pollen. However, pollen removal in plants is not yet
supported by any empirical evidence. In this article, we ex-
amine an interesting pollen deposition strategy in plants
(explosive pollination) and provide the first empirical evi-
dence supporting competitive pollen removal in plants.
Plants from many different families have evolved con-

vergent mechanisms to ballistically release their pollen,
such as Fabaceae (Raju and Rao 2006; Alemán et al. 2014),
Lamiaceae (Harley 1971; Aluri 1990), Marantaceae (Davis
1987), Loranthaceae (Feehan 1985), and Hydrocharitaceae
(Zhang 2020). In these plants, all or most of a flower’s pol-
len is fired at the pollinator when it visits a flower for the
first time. Usually, this is done by keeping floral parts un-
der tension (e.g., Brantjes and de Vos 1981). The pollinator
then releases this tension by triggering a trip mechanism
upon visitation, and the release of tension rapidly cata-
pults the pollen onto the pollinator. Explosive pollination
has been recorded for plants pollinated by bees (Raju and
Karyamsetty 2008; Córdoba and Cocucci 2011; Alemán
et al. 2014), flies (Raju and Karyamsetty 2008), and birds
(Davis 1987). It has also evolved in aquatic plants, pos-
sibly to improve the probabilities of pollen reaching the
water surface (Zhang et al. 2020). In insect-pollinated plants,
Li et al. (2022) were able to disable the explosive mechanism
and found that explosive pollination reduced pollinator for-
aging times and increased pollen export. Often, the rates of
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pollen release can be explained in terms of dosing, where
plants with high visitation rates are expected to apply their
pollen onto pollinators in small doses, while plants with low
visitation rates may be expected to apply larger pollen loads
(Burd 1994; Thomson et al. 2000; Ashman et al. 2004).
However, the evolution of explosive pollination may have
very different driving mechanisms (as described above),
and some species with explosive pollination have very high
visitation rates (Aluri 1990), supporting the idea that ex-
plosive pollination may be explained by the existence of
other pollen deposition strategies (Minnaar et al. 2019). For
example, explosive pollination may fire pollen grains deep
into the hairs of the pollinator’s body, making them harder
to groom, making them attach better, or allowing them to
travel greater distances. Explosive pollination may also
keep pollen grains safe or hidden within the flower where
they cannot be collected by pollen thieves. This pollen is
released, all in one go, only when the legitimate pollina-
tors trip the flower. Finally, pollen fired ballistically at
pollinators may forcibly remove rival pollen grains from
the bodies of pollinators. In this article, we test whether ex-
plosive pollination removes pollen grains from the bills
of hummingbirds in Hypenia macrantha.
Hypenia macrantha (A.St.-Hil. ex Benth.) Harley (Lamia-

ceae) flowers are red and tubular and visited by humming-
birds (Carstensen et al. 2016; Matias et al. 2016; fig. 1).
Short- and long-billed hummingbirds of the Cerrado have
been demonstrated to have very overlapping feeding niches,
Figure 1: Hypenia macrantha flowers in the male phase before (A) and after (B) being triggered and in the female phase (C) evidenced by
the elongated style. In field conditions, flowers are triggered when visited by hummingbirds. During the explosion, the specialized petal
called carina flips back and catapults the pollen load onto the hummingbird’s bill. We simulated the visits in the lab using a hummingbird
skull (E) and triggered or untriggered flowers. We manually placed labeled pollen on the bill and after the explosion, counted the labeled
pollen on floral structures (D) and on the hummingbird’s bill (F). Specifically, we counted the number of labeled pollen grains before (G)
and after (H) simulated visits in triggered and untriggered flowers. We also counted the number of unlabeled pollen grains (arrow) on the bill
after the floral explosion. Three time frames (I–K) show the explosive pollen release of H. macrantha.
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and most flowers are visited by multiple hummingbird
species with varying bill morphology (Matias et al. 2016).
Indeed, the corollas of H. macrantha (mean5SD: 13:365
1:2 mm; n p 14) are considerably shorter than the bills
of most hummingbirds of the Cerrado and are unlikely
to exclude many species from visiting. This may also ex-
plain the prevalence of both short-billed (e.g., Amazilia
versicolor) and long-billed (e.g., Eupetomena macroura)
hummingbird visitors on the flowers (B. Anderson, per-
sonal observation). In unvisited flowers, the anthers of
H. macrantha are not visible and are covered by a keel-like
petal lobe called a carina (Harley 1971; fig. 1A). Triggering
by the pollinator causes the carina to flip back and bend
the anther filaments backward. The carina then releases
the anthers, allowing them to swing upward and catapult
their pollen onto the bill of the pollinator (fig. 1B, 1I–1K;
video S1, available online; Brantjes and de Vos 1981). Later,
the anthers, which are on the ends of unusually hairy anther
filaments, bend downward, and the style elongates past the
anthers as the flower enters its female phase (fig. 1C). This
explosive pollination mechanism is thought to have evolved
at least twice within the Lamiaceae (Brantjes and de Vos
1981) and is also found in several bee-pollinated species
with very high visitation rates (Aluri 1990; Amorim et al.
2021). Here, using a recently developed technique to label
individual pollen grains, we experimentally test two ideas:
(1) explosive pollination removes pollen deposited from
previously visited flowers and (2) the amount of pollen re-
moved by the explosion is positively related to the strength
or accuracy of the explosion and is thus proportional to the
amount of new pollen deposited. A demonstration of ef-
fective pollen removal by floral explosion would provide the
first evidence that male-male competition may have con-
tributed to the evolution of this trait.
Methods

Experiment

The experiment was conducted at the Laboratório de Mor-
fologia, Microscopia e Imagem at Universidade Federal de
Uberlândia, Uberlândia, Brazil, in March 2023. Cut stems
from a flowering population of Hypenia macrantha were
placed in plastic jars filled with water and promptly trans-
ported approximately 30 km (around 20 min) by car to
the laboratory. Transportation along the road would have
caused minimal damage owing to shaking. Upon arrival,
all open flowers were removed to ensure that only newly
developed flowers were used for the experiment on the
next day, after floral anthesis. Before proceeding with the
experiments, we visually checked whether the chosen flow-
ers were properly turgid and in good condition for the
experiments.
To investigate whether the explosive pollination mecha-
nism removes previously deposited pollen grains from the
hummingbird bill, we simulated floral visits to H. macran-
tha flowers by utilizing the skull and bill (lengthp 31 mm)
of a dead long-billed hummingbird (Heliomaster squamosus),
which is commonly found in the area and frequents the
open habitats in which H. macrantha is found (fig. 1E).
Bill length of this species was recorded as 31.6 mm by
Matias et al. (2016). We inserted the bill of the bird into
recently opened, untriggered flowers to determine the ap-
proximate region of pollen placement on the humming-
bird’s bill. This region (12–17 mm from the tip) was marked
with pencil. Most (75%) of the hummingbirds that could
possibly occur at the study site have bills exceeding 17 mm
in length (Matias et al. 2016), suggesting that these plants
often place their pollen on the bills of hummingbird visi-
tors. Unfortunately, we were unable to label pollen grains
inside untriggered flowers without triggering them. Con-
sequently, we collected pollen from H. macrantha flowers
by triggering many flowers inside a clean Eppendorf cen-
trifuge tube (1.5 mL). This pollen was then labeled using
quantum dots (Minnaar and Anderson 2019). Pollen la-
beled with quantum dots fluoresces under ultraviolet (UV)
light, which allowed us to distinguish labeled grains from
unlabeled grains. Quantum dots also do not change the ad-
hesive properties of pollen (Minnaar and Anderson 2019).
The labeled pollen was manually applied in a thin layer
within the penciled region on the bird bill using a small
brush (fig. 1F) so that the total number of labeled grains
could be quantified using a stereomicroscope coupled with
a UV excitation chamber (fig. 1G; Minnaar and Ander-
son 2019). Subsequently, the hummingbird bill with la-
beled pollen grains was inserted into the floral tubes of
either a triggered flower (n p 16) or an untriggered flower
(n p 14). After the simulated visits, we counted the re-
maining labeled pollen grains as well as the total number
of unlabeled pollen grains that had been placed on the
marked region of the hummingbird bill (fig. 1H). Pollen
grains were cleaned off of bills between trials using a swab
embedded in 70% ethanol, and new labeled grains were
applied at the start of each trial.
Statistical Analyses

We compared the number of labeled pollen grains on the
hummingbird bill before and after insertions into trig-
gered versus untriggered flowers using a generalized lin-
ear mixed model. In this case, our response variable was
the total number of labeled pollen grains, while the pre-
dictors were the time when pollen was counted (before or
after the flower visit), the phase of the visited flower (trig-
gered or untriggered), and the interaction between these
two variables. Flower identity was used as a random factor,
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enabling pairwise comparisons of labeled pollen loads
before versus after simulated visits to the flower. For this
analysis, we assumed a Poisson distribution of the response
variable with log transformation. A significant interaction
term would indicate a difference in the pollen removal rate
(number of grains before vs. after visitation) by triggered
or untriggered flowers.
We also fitted a generalized linear model using a beta

distribution with a logit link to test the relation between
the proportion of labeled pollen grains removed and the
number of pollen grains deposited by untriggered flowers
(n p 14) on the hummingbird bill. Data from triggered
flowers were not used in this analysis, as we specifically
wanted to determine whether the number of pollen grains
deposited was proportional to the number removed. Here,
we ln transformed the predictor to achieve better residual
dispersion.
All the statistical analyses were run in R environment

version 4.3.1 (R Development Core Team 2023) using
default packages and the following: glmmTMB (Brooks
et al. 2017), emmeans (Russell 2022), and car (Fox and
Weisberg 2019). Residual dispersion around the fitted
models was checked using the DHARMa package (Hartig
2022).
Results

Explosive pollination removed pollen previously placed on
the hummingbird’s bill (see video S1; fig. 2). Although ex-
perimental visits to both triggered and untriggered flowers
decreased the number of labeled pollen grains on the bill of
the bird, the decrease was greater after experimental visits
to untriggered flowers than to triggered flowers (fig. 2; ta-
ble S1; tables S1–S3 are available online; x2 interaction p
15.76, df p 1, P ! :001). This suggests that the explosive
mechanism removed additional pollen. On the basis of
the estimated marginal means, untriggered flowers re-
moved 1.93 times more pollen grains than previously trig-
gered flowers (table S2). Furthermore, the proportion of
removed pollen grains is positively related to the number
of pollen grains placed by the explosive mechanism (fig. 3;
table S3; estimate p 0.35, z p 2:94, P ! :01).
Discussion

Although experimental visits to triggered flowers remove
pollen from the bill of the hummingbird, visits to explosive,
untriggered flowers remove even more pollen. Pollen is
launched at the bill with what appears to be a considerable
force. In fact, slow-motion video footage reveals that pol-
len travels at approximately 2.62 m/s after it is released
(see “Calculation of pollen velocity” in the supplemental
PDF). Furthermore, pollen clumps on the bill can clearly
be seen being dislodged by the catapulted pollen (video S1).
The difference in pollen removal between triggered flow-
ers and untriggered flowers makes it clear that explosive
pollination on its own accounts for significant amounts of
pollen being removed from the pollen load residing on the
bird’s bill. This is also supported by the observation that
the more explosively deposited pollen within the focal area
of the bill, the more preexisting pollen was removed from
that area, suggesting that explosion accuracy may also have
a role to play in the removal of preexisting pollen. Slow-
motion video footage also suggests that it is primarily the
force of the pollen hitting the pollen loads and bill that re-
moves the residing pollen rather than the rapidly moving
carina or the movement of the hairs on the anther filaments.
It is also not clear how much pollen is removed by these ex-
plosions, as our experiments placed only very small loads
of pollen in a single layer. However, slow-motion video foot-
age suggests that if pollen loads were higher and clumped
(as expected in nature), large quantities may be removed by
explosive pollen.
Removal of preexisting pollen from pollinators is likely

to homogenize the identity of pollen loads and increase the
relative proportion of pollen from the last flower visited.
This should give pollen from the last flower a siring ad-
vantage if the next flower visited is in the female phase.
Consequently, visits to multiple male flowers on the same
plant could negatively affect male fitness by removing “own
pollen” but simultaneously provide a positive effect of pu-
rifying the pollen loads so that most bill pollen is from the
last plant visited. It is unclear at this stage what flower dis-
play sizes and ratios of male- to female-phase flowers would
be optimal for these kinds of competitive strategies. Hype-
niamacrantha produces small floral displays. We typically
found only about three or four untriggered flowers per plant
(B. Anderson, personal observation), suggesting that in this
case, explosions may remove only a little bit of “own pollen”
from pollinators’ pollen loads.
Explosive pollen removal may also result in intersexual

conflict if the presence of male flowers on a plant reduces
the chances of outcross pollen reaching the stigmas of fe-
male flowers on the same plant. This conflict is likely to
increase with the size of the male display relative to the
female display. However, some intersexual conflict is mit-
igated by the fact that there is no explosive pollen release
when flowers are in the female phase. Unlike hermaphro-
ditic plants, the evolution of sperm removal strategies in
animals is not constrained by this intersexual conflict be-
cause animals usually have separate sexes. However, inter-
sexual conflict in plants could be mitigated if flowers are
visited sequentially (females first and males last), as has
been demonstrated for upright inflorescences (Harder et al.
2000; Zhu et al. 2020). This is unlikely the case in H.
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macrantha, which does not have a regular upright display
and untriggered, male-phase flowers appear to be found in-
terspersed throughout the display (B. Anderson, personal
observation). That said, plants typically have many more
female-phase flowers than male-phase flowers (B. Ander-
son, personal observation), and consequently, it is likely
that a pollinator will visit a female flower before visiting a
male flower. The magnitude of intersexual conflict is also
likely to depend on how pollen-limited flowers are, how
reliant they are on outcross pollen for seed set, and what
the chances are of receiving outcross pollen in spite of pol-
len removal. We know nothing about self-compatibility
or pollen limitation in H. macrantha, although other ex-
plosive flowers in this family appear to be extremely self-
compatible and set prodigious amounts of seed (Aluri 1990;
Amorim et al. 2021). If plants are highly self-compatible,
intersexual conflict can beminimized.
To put these pollen speeds into perspective, many ani-

mals are able to move much faster than the 2.62 m/s re-
corded here (Usain Bolt runs approximately four times
faster at 10.44 m/s). However, these movements are still
fast for plants and are orders of magnitude faster than the
speed of a Venus flytrap closing (Forterre et al. 2005). While
they rank among the fastest plant movements recorded
(the second fastest are the pollen catapult mechanisms of
bunchberry dogwoods, 7 m/s; Edwards et al. 2005), they
are far slower than the pollen catapult mechanisms found
in white mulberries, which can exceed 170 m/s (Taylor et al.
Figure 2: The floral explosive mechanism in Hypenia macrantha reduces the number of previously placed pollen grains on the bill. In lab
conditions, we simulated visits by a hummingbird’s bill loaded with labeled pollen grains in triggered and untriggered flowers. We counted
the number of labeled pollen grains before and after visits. In general, floral visits remove pollen grains previously placed on a hummingbird’s
bill, but the effect is greater when the flower was untriggered, evidencing that explosive pollination removes pollen deposited from previously
visited flowers.
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2006). In fact, the catapults of white mulberries exhibit the
fastest known movements in the plant or animal kingdom.
Conclusion

While there are potentially many competing hypotheses
that could explain the evolution of explosive pollination
(outlined in the introduction), this article explores a sin-
gle hypothesis (pollen removal). Consequently, although
we can say that explosive pollen removes existing pollen
from the bird, we cannot say whether this was the prim-
ary selective pressure explaining its evolution (Gould and
Lewontin 1979). Nevertheless, this is the first article to
demonstrate proof of concept: that explosive pollination
could be selected through pollen competition, in a way
similar to the evolution of sperm removal in animals. This
article suggests the possibility that explosive pollination can
evolve solely as a pollen removal strategy; however, it could
also evolve as a contributing selective pressure in conjunc-
tion with other selective pressures. Most importantly, these
results force us to think a little differently about plants and
recognize that they may be competing with one another
in previously unimagined ways (Anderson and Minnaar
2020). However, it is also important to recognize that the
conditions under which pollen competition can drive pol-
len removal strategies in plants are likely to be more lim-
ited than in animals because of the complexities resulting
from hermaphroditism and large display size (discussed
above). We also show that it is possible to learn much about
the mechanics of flowers through simulated approaches like
this, as evidenced by Darwin, who predicted the existence
of an extraordinary long-tongued hawkmoth after tinker-
ing with the Madagascan star orchid using needles, bristles,
and cylindrical rods as probes (Darwin 1862).
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Natural History Editor: Leticia Avilés
“Still another very common and at the same time a very curious plant is the Fouquiera splenden.… It grows all over the deserts of Arizona
and among the rocks on the mountains.… The flowers are of a bright scarlet, and form racemes at the end of the branches.” From “Bo-
tanical Notes from Tucson” by Jos. F. James (The American Naturalist, 1881, 15:978–987).
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