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Summary

• Plant adaptations to pollinators are usually studied at the species level, but are
expected to occur at the local population level and be reflected in fine-scale patterns
of floral variation.
• Here, we examined whether a guild of c. 20 South African plant species pollinated
by the long proboscid fly Prosoeca ganglbaueri (Nemestrinidae) exhibits fine-scale
patterns of geographical covariation and convergent evolution at a local scale.
• Fly proboscis length is highly variable among sites (20–50 mm). Plant adaptation
results in floral depths of plants within the guild being closely matched with the pro-
boscis length of their fly pollinator across numerous sites. This results in patterns of
divergence among allopatric populations and convergence among species within a site.
• The most likely evolutionary processes driving these patterns include coevolution
between the fly and plants with consistent and abundant rewards, as well as one-
sided evolution in rare and nonrewarding species that do not influence the coevo-
lutionary process. Pollinator-mediated selection on spur length was confirmed for a
nonrewarding orchid species in the guild by a reciprocal translocation experiment.
Thus, rarer and nonrewarding species in the guild are forced to keep pace with the
coevolutionary race between common rewarding flowers and flies.
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Introduction

Natural selection is seldom more apparent than when totally
unrelated organisms have very similar traits resulting from similar
selective pressures acting on them. This pattern of convergent
evolution is most striking when organisms use nonhomologous
parts to arrive at the same solution to a common problem. Some
of the most striking examples of convergent evolution occur in
guilds of unrelated plants that are adapted to a common
pollinator or functional group of pollinators (Fenster et al.,
2004). These ‘floral syndromes’ are most evident when polli-
nation systems are specialized (Johnson & Steiner, 2000).
Typically, plants show convergence in both advertising traits
(e.g. colour) and morphological traits that accommodate the
pollinator’s body, and thereby result in effective pollen transfer
(Fenster et al., 2004). An example of the latter is that flowers
pollinated exclusively by long-tongued insects often have corres-
pondingly long nectar spurs or corolla tubes (e.g. Nilsson, 1988;
Johnson & Steiner, 1997; Whittall & Hodges, 2007; Anderson
& Johnson, 2008; Pauw et al., 2009).

Studies of floral syndromes have traditionally been limited
to general descriptions of similarities among flowers pollinated
by a particular pollinator or group of pollinators (Brown &
Kodric-Brown, 1979; Johnson & Bond, 1994; Goldblatt &
Manning, 2000). Although some recent studies have gone
beyond this by using multivariate analyses to show similarities
and convergence between taxa pollinated by the same pollinator
(e.g. Wilson et al., 2004, Ollerton et al., 2003), few have con-
sidered fine-scale patterns of convergence at the population
level. Most population-level studies of floral adaptation in plants
have been carried out in the context of pollination ecotypes,
the formation of which may be very important in the process
of plant speciation (Coyne & Orr, 2004). One of the earliest
was Grant & Grant’s (1965) study of pollination ecotypes in
Gilia leptantha, which seems to have undergone pollinator shifts
between bees and bee-flies, as reflected in floral variation across
its range. A number of studies have subsequently demonstrated
firm connections between population-level variation in floral
traits and shifts between different pollinators (e.g. Johnson, 1997;
Johnson & Steiner, 1997; Nattero & Cocucci, 2007). In other
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cases, ecotypes may reflect adaptations to, or coevolution with,
a single geographically variable pollinator species (Anderson &
Johnson, 2008; Pauw et al., 2009) or even the outcome of
interactions with other plant species (Johnson, 1994; Hansen
et al., 2000).

In this study, we take a more in-depth approach to conver-
gence than most past studies by examining patterns of trait
matching at the site level instead of the species level. We study
geographical covariation and local convergence in a guild of
plants pollinated by the long-tongued nemestrinid fly Prosoeca
ganglbaueri, which functions as the near-exclusive pollinator of
c. 20 plant species in southern Africa (Goldblatt & Manning,
2000). Flowers in this guild tend to be white-pink in colour,
possess long corolla tubes, and have no obvious scent. In a previ-
ous study, the tongue length of P. ganglbaueri was shown to
covary with the corolla length of the most common nectar plant
(Zaluzianskya microsiphon) in a manner consistent with coevo-
lution (Anderson & Johnson, 2008). However, rarer and non-
rewarding members of the guild are unlikely to influence the
evolution of tube length in flies. It has been suggested that the
corolla tubes of these rare/nonrewarding plants may nevertheless
track the evolving tongue lengths of their pollinators to ensure
efficient pollen transfer (e.g. Johnson & Steiner, 1997). This is
a process of unilateral evolution, unlike coevolution which is a
reciprocal process of co-adaptation between organisms (sensu
Janzen, 1980).

Convergence of floral traits among species has seldom been
demonstrated at the local scale. Because of the enormous vari-
ation in the proboscis length of P. ganglbaueri, we predicted that
members of the guild of plants pollinated by this fly would
show fine-scale geographical covariation with the fly’s proboscis
length and that convergent evolution would be evident among
plant species at the local site level. We also tested whether spur
length of a nonrewarding orchid in the guild is under pollinator-
mediated selection.

Materials and Methods

Measurements of morphological traits

Prosoeca ganglbaueri Lichtwardt flies and flowers from 20 study
sites over an area of c. 253 000 km2 in South Africa (Fig. 1) were
examined during the months of January–March 2004 and 2005.
At each site, the functional proboscis lengths of 3–60 flies and
the floral tubes of 20–89 plants per species in the pollination
guild were measured (using methods outlined in Anderson
et al., 2005), the only exception being Disa nivea H.P. Linder
at the Bastervotepad site, where only three of these orchid
plants were found and measured. In most plants pollinated by
P. ganglbaueri, flowers have a long narrow corolla tube or spur into
which the fly probes with its tongue for nectar. Depending
on the plant species, pollen is placed on the head, chin, thorax
or abdomen (dorsal or ventral) of the fly (see Goldblatt &
Manning, 2000 for descriptions of pollen deposition sites in

the guild). At the apex of the corolla, the flower ‘flares’ and
often forms a broad chamber that accommodates the head or
body of the fly. For each plant species, we measured the
distance from the end of the tube to the point where the
corolla flares, on the basis that it is this section that
accommodates the length of the pollinator’s proboscis. In
orchids we measured the length of the spur, from its tip to
the stigma. We also included the amaryllid genera
Brunsvigia and Nerine in the analysis, both of which produce
a very short tube. Instead of a tube matching the tongue
length of the flies, these plants have long protruding anther
filaments and styles which ensure placement of pollen on the
abdomen of the insect while it probes the nectaries (Supporting
Information Fig. S1). As the tube length of non-amaryllid
plants is hypothesized to match only the proboscis length of
flies, we subtracted the total body length of the flies (averaged
for each population) from the stigma–nectary distance
(Fig. S1) of each Brunsvigia and Nerine population. Flowers of
these genera are protandrous and were measured in the female
phase, after the stigma had curved around into the position
occupied by the stamens in Fig. S1 (supplementary material).

We measured and recorded all species that we observed
to be visited only by P. ganglbaueri as well as those species
previously recorded to be part of the P. ganglbaueri pollination
guild (see Goldblatt & Manning, 2000). Observations and
data collection took place over a time frame of between 1 and
5 d per site. The total number of days spent recording data
was 72.

Fig. 1 A geographic mosaic for the guild of plants pollinated by the 
long-tongued fly Prosoeca ganglbaueri. Each circle represents a site 
from which we sampled both flies and plants, where the size of each 
circle is proportional to the length of the average fly proboscis in each 
population.
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Analyses of covariation and convergence

To determine whether tube lengths of guild members covary
geographically with the proboscis length of P. ganglbaueri, we
performed regression analyses based on mean population mea-
surements for individual guild members, and grand means
(means of means) for the entire guild. As a formal test of
convergence, we tested whether the tube lengths of the three
most widespread guild members (Zaluzianskya microsiphon
(Kuntze) K. Schum., D. nivea and Gladiolus oppositiflorus J. D.
Hook) converged on fly proboscis length at each site. Here we
ran a general linear model on flower tube length with the
average proboscis length as a continuous predictor and plant
species as a categorical factor, as well as the interaction of
these two terms to test for differences among species in the
slope of the proboscis–flower tube length relationship. If the
interaction term was not significant, we reran the analysis as
an ANCOVA without the interaction term. The statistical
package spss (release 16.0; SPSS Inc., Chicago, IL, USA) was
used throughout. As a further test of fine-scale guild
convergence among plant species, we used regression to explore
the relationship between the flower tube length of the most
common guild member (Z. microsiphon) and those of all the
other guild members at each site.

Is tube length adaptive?

To determine whether floral tube length is an adaptive trait,
we performed a selection experiment using the nonrewarding
guild member D. nivea (Orchidaceae), which is a mimic of the
flowers of Z. microsiphon (Anderson et al., 2005; Anderson &
Johnson, 2006). To simulate a polymorphism for spur length,
we performed reciprocal translocations between site 12 (Fig. 1),
where plants have spurs measuring 42.13 ± 0.68 (SE) mm, and
site 10, where plants have spurs measuring 24.27 ± 0.69 mm, thus
creating mixtures of long- and short-tubed plants at each site.
The two sites are 27 km apart. Plants in both populations
were bagged in bud while their flowers were allowed to open.
Once open, these virgin inflorescences were cut and placed in
test tubes of water. Eighteen pairs of cut inflorescences (consisting
of an individual from each site) were randomly placed in a
Z. microsiphon population at site 10 (the Lodge site). Similarly,
19 pairs of inflorescences were placed in a Z. microsiphon
population at site 12 (the Rama site). They were left in the field
for 1 wk, during which the test tubes were topped up with
water when necessary. Thereafter, each flower was examined for
removal of pollinaria and deposition of pollen massulae. Female
pollination success was taken as the proportion of flowers on
each inflorescence that had been pollinated, while male pollina-
tion success was taken as the proportion of flowers with pollinaria
removed. Proportion data were arcsine square-root transformed
and after the residuals tested positively for normality we
performed a general linear model with site and tube length
ecotype and their interaction as categorical factors and floral

display size as a continuous predictor. If the efficiency of pollen
transfer is related to spur length as predicted by Darwin (1862),
then we expect longer-spurred ecotypes to always perform
equally or better than shorter-spurred ecotypes in terms of pollen
receipt and removal. Furthermore, selection favouring longer
flower tubes should be stronger at site 12, where flies have a
longer proboscis.

Results

Covariation and convergence

The corolla tube lengths of all three widely distributed plant
species, Z. microsiphon, G. oppositiflorus and D. nivea, were
strongly correlated with the proboscis length of P. ganglbaueri
(R2 > 0.68, P < 0.02 for all; see Fig. 2). In addition, the grand
mean for the flower tube length of all guild members at each
site correlated strongly with the proboscis lengths of the flies
(R2 = 0.73, P = 0.001; Fig. 2). The slopes of the proboscis–tube
length regressions for all three species tested were not significantly
different (F2,22 = 0.042, P = 0.9590). In a model that excluded
this nonsignificant interaction term, fly proboscis length was
a significant predictor of tube length across all three plant
species (F1,24 = 54.173, P < 0.0001) and the intercepts for the
proboscis–tube length regressions did not differ significantly
among species (F1,24 = 0.252, P = 0.6200; Table S2). Moreover,
the average tube length for the guild (excluding Z. microsiphon)
at each site was positively correlated with the tube length of
Z. microsiphon (R2 = 0.59, P < 0.006). Guild members within
a site also clustered closely to the tube lengths of Zaluzian-
skya (Fig. 3). It is also evident from this scatter plot that for
wide-ranging species there is considerable divergence in tube
length between populations, and all of the species with more
than one population showed significant divergence in tube
length (F > 21, P < 0.001; Table S1).

Is tube length adaptive?

For pollen deposition, a measure of the female component of
pollination success, the long-spurred ecotype significantly out-
performed the short-spurred ecotype at both the Rama and
Lodge sites (Fig. 4). The average proboscis length of fly
pollinators was longer than the average spur length of the
short-spurred ecotype at both sites (Fig. 4). Both D. nivea spur
length ecotype and site were significant predictor variables for
pollen deposition (F1,67 = 7.93, P = 0.006 and F1,67 = 33.6,
P < 0.0001, respectively; Table S3). However, the interaction
between these two terms was not significant (F1,67 = 0.15,
P = 0.6889), implying that the long-tubed ecotype had the
same relative advantage over the short-spurred ecotype at
both sites.

For pollinaria removal, a measure of the male component of
pollination success, the long-spurred ecotype also significantly
outperformed the short-spurred ecotype at both sites (Fig. 4).
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Spur length was a significant predictor variable for pollinaria
removal (F1,67 = 18.76, P < 0.0001; Supporting Information
Table S3) and the interaction between spur length and site was
significant (F1, 67 = 5.94, P = 0.0017), reflecting stronger selec-
tion for long tubes through the male component of pollination
success at the Rama site, where flies had the longest proboscides
and the long-spurred ecotype is native (Fig. 4).

Discussion

Trait matching

In this study, we found that fine-scale trait matching between
pollinators and plants has led to patterns of strong phenotypic
convergence between different plant species from the same site

and phenotypic divergence between plants from different sites
(Figs 2, 3). Trait matching of the fly and floral traits may be
brought about by either coevolution or unilateral evolution,
reiterating the need to show reciprocal selection in order to
demonstrate coevolution (see Janzen, 1980). Some species in
this guild, such as Z. microsiphon, appear to have coevolved
with P. ganglbaueri (Anderson & Johnson, 2008). Zaluzianskya
microsiphon is the most common member of the guild and
pollen load analysis shows that at the majority of sites it is the
species most relied on for nectar by P. ganglbaueri (Johnson &
Anderson, 2008). Other species that are rare or nonrewarding
(e.g. D. nivea) would not have influenced the evolution of the
fly proboscis length (and thus would not have coevolved with
the fly), but they exhibit the same pattern of correlation with
the fly proboscis length (Figs 2, 3). The evolution of tube length

Fig. 2 Relationships between the flower depth of various guild members and the proboscis length of Prosoeca ganglbaueri across the study sites. 
Symbols are means (± SE). (a) Zaluzianskya microsiphon (from Anderson & Johnson, 2008), (b) Gladiolus oppositiflorus and (c) Disa nivea. 
(d) The entire guild of plants pollinated by P. ganglbaueri (see Supporting Information Table S1).
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in the rare or rewardless species is probably a consequence of
unilateral tracking of the coevolutionary process between the
pollinator and common rewarding plants. As these rare and
rewardless plants have a specialized pollination system, they have
kept pace with the evolutionary race because having floral tubes
that match fly tongues facilitates pollen transfer efficiency (Nils-
son, 1988; Johnson & Steiner, 1997; Pauw et al., 2009). The
P. ganglbaueri guild in the Drakensberg mountains (this study)
and the Moegistorynchus longirostris one in the Cape documented
by Johnson & Steiner (1997), Manning & Goldblatt (1997)

and Pauw et al. (2009) exemplify how the coevolutionary
process can have indirect effects by driving the divergence of
species that are not strictly part of the process.

Is tube length adaptive?

Our results add to the growing number of studies showing the
adaptive significance of flower tube length and strong selective
pressures acting on this trait in plants with specialized pollination
systems (Nilsson, 1988; Johnson & Steiner, 1997; Alexandersson

Fig. 3 Study sites ranked in order of Prosoeca ganglbaueri proboscis length, showing variation in plant reproductive traits within and among 
sites for each plant species.

Fig. 4 Female and male pollination success 
of long- and short-spurred Disa nivea plants 
at two of the study sites. Short-spurred plants 
are native to the Lodge site where flies 
have medium-length proboscides whereas 
long-spurred plants are native to the Rama 
site where flies have long proboscides. 
*, P < 0.05; ***, P < 0.001.
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& Johnson, 2002; Anderson & Johnson, 2008; Pauw et al.,
2009).

Anderson & Johnson (2008) showed by means of correla-
tion analyses and phenotypic selection experiments that tube
length in the common rewarding species Z. microsiphon is
adaptive and probably arose through the process of coevolu-
tion with its pollinator. Here we showed that selection on spur
length through the male component of pollination success in
the rewardless (and thus unilaterally evolved) orchid D. nivea
was stronger at a site with relatively long-tongued flies than it
was at a site with relatively short-tongued flies (Fig. 4). This
phenotype–environment interaction helps to explain how
spur length could diverge among sites. Selection through the
female component of pollination success also always favoured
long spurs, but, unlike selection through male fitness, did not
differ between sites (Fig. 4). This means that divergence in
spur length between sites is more likely to have been driven by
selection through male than through female fitness. Neverthe-
less, our results suggest that long-spurred mutants would be
favoured through both components of fitness at the Lodge site
where plants currently have relatively short spurs. The appar-
ent maladaptation of the native short-spurred plants at this
site could have resulted from range shifts where longer-
tongued flies recently invaded and plants have not had time
to adapt. Maladaptations are expected and are to some extent
diagnostic of systems that are driven by coevolution, and it is
thought that they represent areas where future bouts of coevo-
lution may take place (Thompson et al., 2002). The causes
of mismatches in adapted traits are discussed in Thompson
et al. (2002) and reflect the geographic mosaic structure of
coevolved processes including asymmetries in gene flow, differ-
ences in community structure, time lags and the antagonistic
nature of arms races.

Convergence

Patterns of phenotypic convergence among the three most wide-
spread species in this system (Fig. 3) have probably arisen
because they are adapted to the same pollinator in each site.
This was evident from the lack of significant differences in the
slopes and intercepts of the proboscis length–tube length rela-
tionships for three common members of the guild (Fig. 2a–c,
Table S2), the significant relationship between the mean fly
proboscis length and grand means for the flower tube lengths
of all guild members across the study sites (Fig. 2d), and the
significant relationship between the mean tube length of Z.
microsiphon and those of other guild members at each site (see
Results). Despite strong convergence among guild members,
there were nevertheless some outliers (see Fig. 3) that may corre-
spond to plants with multiple pollinators that impose additional
selection on tube length. For example, we suspect that Cycnium
racemosum is also pollinated by short-tongued tabanid flies as
it has been observed to be visited by these flies at other sites
(Johnson, 2000) and that Brownleea macroceras may be

pollinated by another unidentified pollinator because its strong fra-
grance and blue colour are exceptions to the general P. ganglbaueri
floral syndrome. These two species with mismatched flowers
may be in the process of incorporation into the guild after range
expansion into areas without their usual pollinators or where
their usual pollinators are not as effective as P. ganglbaueri for
pollination (cf Stebbins, 1970).

Divergence

One of the most outstanding features of our study system is
the dramatic variation in proboscis length of P. ganglbauri
(Fig. 1). This variation is not simply clinal, but is a patchwork
mosaic of differing proboscis lengths across the distribution
range (Fig. 1). Anderson & Johnson (2008) considered the
possibility that differences in habitat microclimates may
account for the mosaic of pollinator tongue lengths because it
may be more difficult to evolve and maintain long tongues
in harsh microclimates (e.g. the summit of the Drakensberg)
than in more mild microclimates (e.g. the base of the
Drakensberg). They found that altitude partly explains the
proboscis length of P. ganglbaueri, but that flower tube length,
regardless of altitude and other physical environmental
predictors, was the strongest predictor of fly proboscis length.

Evidence suggests that the enormous site-by-site variation
in this system arises from a coevolutionary process (Johnson
& Anderson, 2008). Coevolutionary outcomes tend to occur
at the population level and be geographically variable, which
results in a mosaic of coevolutionary hotspots and coldspots
(Thompson, 1994, 1999, 2005). These hotspots may be a result
of different interacting communities at each site. In addition,
gene flow patterns may affect coevolutionary outcomes by
swamping local adaptations (Lenormand, 2002). However,
gene flow could actually facilitate local adaptation by bringing
about evolutionary novelties upon which natural selection can
act (see Gandon et al., 1996; Rieseberg & Carney, 1998; Riese-
berg & Burke, 2001; Brockhurst et al., 2003).

Conclusion

The fine-grained patterns of floral variation documented in
this study appear to have arisen from local adaptation to the
long-proboscid fly P. ganglbaueri, which has been shown in
earlier studies to be an effective pollinator of the plants in this
guild (Goldblatt & Manning, 2000; Johnson et al., 2002; Ander-
son et al., 2005; Anderson & Johnson, 2008). We infer that two
processes are at work: common members of the guild, such as
Z. microsiphon, can influence the evolution of fly proboscis
length because the availability of their nectar is critical for fly
fitness (see Pauw et al., 2009, for evidence of this in a different
fly system) and would coevolve with the fly, while flower tube
lengths of less common and nonrewarding members of the
guild would evolve unilaterally to track the changing proboscis
lengths of flies at the local scale (Fig. 2c). The outcome is a
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floral syndrome that is not fixed at the species level, as assumed
in previous studies of floral syndromes, but, instead, reflects a
complex pattern of convergent evolution at the scale of local
populations (Fig. 3).

In many ways, the patterns of morphological variation in
this pollination guild system are similar to the extraordinary,
fine-scale patterns of spatial colour variation found in butterfly
Müllerian mimicry rings (e.g. Turner, 1976). While frequency-
dependent selection is the main diversifying factor in butterfly
mimicry systems, it appears to be coevolution in the P. gangl-
baueri pollination system. However, the process of advergent
evolution, whereby rarer species track the evolutionary changes
in common species (Turner, 1977, 1984; Gilbert, 1983), appears
to be a common feature of both of these systems and is deserving
of far more attention in research on plant pollination systems.
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